

OREGON DEPARTMENT OF TRANSPORTATION

TRAFFIC SIGNAL MANAGEMENT PLAN (TSMP)

MARCH 10, 2020

- Purpose
- Background & Outline
- Operational Objectives
- Performance Measures
- Next Steps

Purpose

- Describe how the traffic signal system supports the transportation and mobility goals of ODOT and partner agencies
- Identify typical operational situations and objectives for varying context-based scenarios
- Provide a framework to sustain and advance the design, operation and maintenance of the traffic signal system
- Provide a basis for funding operations and resources
- Provide a basis for succession planning

Background - Why

C Ongoing (Life of Plan)					
X	Near Term (1	–3 years)	🛗 Lon	g Term (3–5	years)
2018	2019	2020	2021	2022	2023

- Operations quick fix program
- Operations guide
- Traffic signal management plan
- Operations program training plan
- Recruitment & retention strategy
- Private sector data sharing

Background - Efforts

ODOT CMM - Self Assessment

Dimension	ODOT Level	
Business Process		
Design	2.1	
Operations	1.9	
Maintenance	1.5	
Management	1.3	
System & Technology	1.5	
Infrastructure	1.6	

Dimension	ODOT Level	
Workforce	1.8	
Organization & Staffing	1.3	
Performance Measurement	1.5	
Workforce	1.8	
Culture	1.5	
Collaboration	1.2	

Background - Good Basic Service

- Document processes
- Clearly articulate objectives
- Have expert, committed staff
- Have predictable resources
- Measure performance in a meaningful way

Good Basic Service (GBS) Model

Document Outline

- Mission, Goals, Objectives
- Strategies and Tactics
 - Design
 - Operations
 - Maintenance
- Performance Measures
- Action Plans
- Management (Future)*
 - Administration
 - Budgeting
 - Staffing

Source: DKS

Figure 2. Graphic. Relationships among agency documents.

GOST

Mission & Goals - Oregon Department of Transportation provides a safe and reliable multimodal transportation system that connects people and helps Oregon's communities and economy thrive.

TSMP Goals

- 1) Optimize mobility and accessibility
- 2) Maximize operational efficiency
- 3) Provide safe right-of-way assignment
- 4) Support economic vitality
- 5) Preserve traffic signal infrastructure
- 6) Develop workforce (Future)

Goals & Objectives

- Design
- Operations
- Maintenance

Goal 1 – Optimize mobility and accessibility		
Objective D-1 : Design traffic signals to accommodate all users (pedestrians, bicycles,		
vehicles, transit and freight)		
Objective O-1 : Operate traffic signals to accommodate all users (pedestrians, bicycles,		
vehicles, transit and freight)		
Objective O-2: Operate traffic signals based on context and operational objectives		
Goal 2 – Maximize operational efficiency		
Objective D-2: Design traffic signals with appropriate infrastructure (controllers,		
detection, communication) to allow flexible operations.		
Objective O-2 : Operate traffic signals based on context and operational objectives.		
Objective O-3: Proactively monitor traffic signal (system) operations		
Objective O-4: Coordinate with neighbor agencies to develop regional solutions		
Objective M-1: Maintain traffic signal infrastructure so that it operates as it was designed		
to.		
Goal 3 – Provide safe right-of-way assignment		
Objective D-3: Design traffic signals with appropriate infrastructure (controllers,		
detection, communication) and signal phasing to provide safe operations.		
Objective O-2: Operate traffic signals based on context and operational objectives.		
Objective M-1: Maintain traffic signal infrastructure so that it operates as it was designed		
to.		
Goal 4 – Support economic vitality		
Objective D-1: Design traffic signals to accommodate all users (pedestrians, bicycles,		
vehicles, transit and freight)		
Objective O-1: Operate traffic signals to accommodate all users (pedestrians, bicycles,		
vehicles, transit and freight)		
Goal 5 – Preserve traffic signal infrastructure		
Objective D-4: Design traffic signal with reliable infrastructure and equipment		
Objective M-1: Maintain traffic signal system proactively so it operates as intended.		
Objective O-3: Proactively monitor traffic signal (system) operations		
Objective M-2: Undertake maintenance in a cost-effective manner.		
Goal 6 – Develop workforce (Future)		

Performance Measures Vs. Detection Requirements

STOP BAR PRESENCE DETECTION:

Phase Termination – graphical representation of why each phase terminated (Gap Out, Max Out, Force Off, Ped)
Split Monitor – report showing the duration of each phase per cycle and the reason for phase termination.
Split Failure – report showing when a phase "fails" (based on occupancy ratios)

Objectives – Context Based

How do you operate traffic signals given the following conditions?

Isolated Intersection

- Congested
- Uncongested

Corridor/Network

- \circ Congested
- Uncongested

Interchange Ramps

- o Isolated
- Corridor

Special Conditions

- Event
- Downtown Grid
- Bicycles
- o Transit
- Freight
- ∘ Inter-agency
- Others?

Objectives – Metrics

Maximize Throughput

 Provide green split times that maintain high level of saturation without causing unacceptable congestion or delay on minor movements

Minimize Queuing

- Design timings to prevent or minimize phase failures (queues)
 - splits, sequence, phasing

Equitably Distribute Green Time

 Provide green split times that serve all movements in an equitable manner and minimize delay

Smooth Flow

 Design coordinate timings that provide green band along corridor in one or both directions to minimize stops for platoon

Cut Sheets

1

2

3

ISOLATED INTERSECTION

CONGESTED

In this context, the intersection operates in isolation (all or part of day). It operates isolate because:

- It is not physically close to other traffic signals.
- The natural cycle length is different than nearby signals.
- There is a sudden traffic surge that overwhelms the coordinated cycle length (school dismissal).

OBJECTIVE: MAXIMIZE THROUGHPUT

Provide green split times that maintain high degree of saturation without causing unacceptable congestion or delay on minor

movements (move as many cars as possible through the intersection – on all approaches).

TACTICS:

- Program Max green times and detector settings based on traffic conditions to optimize use of green time (may be different max time and/or passage time at different times of day)
- Program Variable Max green times to allow timings to adjust to conditions.
- Operate left turn phase type to provide safe assignment of right of way.
- Consider time-of-day (TOD) restrictions on flashing yellow leftturn arrow (FYLTA) during peak periods.
- If in rural location, review phase times and detector settings to match expected vehicle type.
- Program Phase Sequence to optimize use of green time.

PERFORMANCE MEASURES:	REQUIRED DETECTION:	REQUIRED DETECTION:	
Split failure (ROR/GOR)*	Stop bar presence		
Phase termination	Stop bar presence		
Split time	Stop bar presence		
Yellow/red actuations	Stop bar count		
Approach delay time	Advance		

*Red Occupancy Ratio/Green Occupancy Ratio

Management & Administration (Future)*

- Staffing
- Training
- Funding
- Budgets

Training at ODOT

Fuels Tax

Civil Right Procureme

Training a

Project Fe Request

External Active PROJECT

Project Esti Project Wa Steel Mater Asphalt and

	The Oregon Department of Transportation provides a variety of training and certification opportunities in engineering, construction and technical training.
Froup	Use the table below or search the iLearn catalogue to locate the type of training you'd like to take.
nt	ODOT Training Opportunities
ODOT leral Aid Number	In order to register for ODOT training, you must have an account in iLearn, the state learning management system.
NISE	Agency Training Pages and Conferences
ress to ProjectWise	Name
	ACEC/ODOT Brown Bag Lunch Series
CONTROLS	Inspectors Certification Program
Contracting	Local Government Training Opportunities
nator	Upcoming Technical and Engineering Training
les	Technology Transfer Center
al Values	Construction Section Training & Certification
Fuel Pricing	Truck Inspector Training for Law Enforcement
10 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	2010 ACC ODOT ACEC Dedexing Conference

- Customer Service
- Inter-department coordination
- Inter-agency coordination

*Note: Current TSMP to be used to inform this future section

Next Steps

- Complete TSMP Estimated end of March, 2020
- Distribute to ODOT Regions and interested Agencies
- Develop plan for Administration/Staffing/Budget Section
- Develop Plan for interagency communication and collaboration

THANK YOU

DAVE HIRSCH – PE, PTOE

ODOT REGION 4 TRAFFIC OPERATION ENGINEER TSMP TECHNICAL LEAD DAVID.HIRSCH@ODOT.STATE.OR.US